Article ID Journal Published Year Pages File Type
7823898 Polymer Degradation and Stability 2018 28 Pages PDF
Abstract
Polymers with a finite lifetime are of great interest for oil and gas industry. Thermoplastic elastomers (TPEs) combine the strength of thermoplastics with the flexibility of elastomers, a characteristic also potentially useful in oil and gas applications. We studied the hydrolytic degradation of a TPE of interest at elevated temperatures from both a mechanical and chemical perspective, and have demonstrated that the chemical degradation rates, the change in crystallinity and the storage modulus all follow the pseudo zero order kinetics with respect to varying time at three temperatures. Applying Arrhenius' empirical relationship to the determined rates gives rise to a temperature-dependent model that predicts the degradation behavior of the TPE outside of the experimental temperature range. Our results indicate that hydrolytic degradation leads to an increase of crystallinity (chemicrystallization) and a decrease of tensile strength and strain, and that the increase of crystallinity strongly correlates to the increase of the storage modulus. The polymer eventually deteriorates due to brittleness.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,