Article ID Journal Published Year Pages File Type
782580 International Journal of Mechanical Sciences 2011 13 Pages PDF
Abstract

Aeroelastic behavior of a supersonic rotating rectangular plate in the air medium is studied. For simulating the plate structure, the Mindlin first-order shear deformation plate theory along with Von Karman nonlinear terms is employed. Air dynamic pressure is modeled using first-order piston theory. The plate is placed inside a rigid baffle to remove shock waves generated by plate rotation and provide a uniform flow passing over the plate. Nonlinear dimensionless generalized equations of motion are presented based on the Kane dynamic method. After linearization of the nonlinear equations of motion, effect of different parameters including plate aspect ratio, thickness ratio, hub radius ratio and dimensionless rotation speed on aeroelastic behavior of the system are investigated. Frequency locking and high frequency flutter phenomenon are observed in the numerical results.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,