Article ID Journal Published Year Pages File Type
7825815 Progress in Polymer Science 2018 31 Pages PDF
Abstract
The design and fabrication of self-assembled peptide nanostructures offer an amazing platform for creating functional nanomaterials for various biomedical applications. Utilizing the mechanical and biological advantages of the protein-mimetic peptide (PMP) system, and combining self-assembled PMP nanofibers with other nanomaterials like nanoparticles, the fabricated PMP-based hybrid fibrous nanostructures can serve as promising candidates for advanced technological applications. In this review, we present the design, synthesis, modification, and fabrication of PMP nanofibers by mimicking the properties and functions of several types of proteins, including extracellular matrix proteins, silk proteins, amyloid proteins, and heparin. The sequence and motif design of PMPs, and the relationships between the design of PMP monomers and the fabrication of functional fibrous biomaterials are introduced and discussed. Furthermore, we summarize a basic classification of various peptide motifs, and provide some instructions for the function-based design of peptide nanostructures, in which some issues on the motif design and function tailoring are discussed. Finally, the recent advances in the PMP nanofiber-based functional nanomaterials in biomineralization, cell culture, tissue regeneration, drug delivery, hemostasis, bioimaging, and biosensors are presented in detail. We believe that this review will be very helpful for researchers to understand the property-specific molecular design, controllable supramolecular self-assembly, and motif-specific applications of both peptides and proteins.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,