Article ID Journal Published Year Pages File Type
7825825 Progress in Polymer Science 2018 10 Pages PDF
Abstract
Dielectric capacitors have attracted ever-increasing interest in recent decades for numerous applications in modern electronic and electrical power systems due to their fast charge/discharge speed and high energy density. Novel dielectric materials are highly sought for these capacitive applications. Polymer dielectrics are attractive as they can offer high dielectric strength, low dielectric loss, and light weight, however, a few challenges still exist. For examples, the state-of-the-art polymer dielectric, biaxially oriented polypropylene (BOPP), has low dielectric permittivity, while polyvinylidene fluoride (PVDF) has high dielectric loss. These hurdles require developing next-generation polymers as dielectric materials with new chemistry and unique architectures that are tunable in compositions, flexible in mechanical properties and stable at high temperature. In this short review, we begin with some theoretical considerations for the rational design of dielectric polymers with high performance. In the guidance of these theoretical considerations, we review recent progress toward dielectric polymers based on two major approaches, in terms of macromolecular architectures, namely main-chain and side-chain dielectric polymers, and various chemistry and compositions are discussed within each approach.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,