Article ID Journal Published Year Pages File Type
782648 International Journal of Mechanical Sciences 2010 11 Pages PDF
Abstract

An elastic–plastic mathematical model is presented for plane strain flow of sheet metal subjected to strain rate effects during cyclic bending under tension. The model calculates the stress, strain, strain rate, flow profile geometry, springback and residual stresses for steady state flow of sheet metal under plane strain along the width. Stress reversals were experimentally quantified using a pure bending moment test and were included in the model through Bauschinger factors. Modeling results for two materials, mild steel and aluminum alloy, were in good agreement with experimental results from bending under tension test devices. The iterative nature of the model, associated with a representative experimental framework proved a valuable approach to improving the modeling of sheet metal forming and springback control.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,