Article ID Journal Published Year Pages File Type
783172 International Journal of Impact Engineering 2011 5 Pages PDF
Abstract

We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km s−1 on copper films ranging in thickness from from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimetre scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/dp < 1.5, where f is the film thickness and dp is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,