Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7832934 | Applied Surface Science | 2018 | 25 Pages |
Abstract
Surface-controlled CuOx/rGO nanocomposite has been successfully fabricated in this study using a simple hydrothermal method. In addition to the characterization by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption, the catalytic conversions of 4-nitrophenol (4-NP), methylene blue (MB) or rhodamine B by the CuOx/rGO nanocomposite in the presence of NaBH4 were carried out. The results demonstrate that all the selected probe reactants show no adsorption on the as-prepared CuOx/rGO nanocomposite, however, their conversions are close to 100% and can be carried out within several minutes. The excellent catalytic activities may be associated with the multi-valenced copper species and the controlled surface of the CuOx/rGO nanocomposite. In the meantime, the CuOx/rGO nanocomposite has a better stability and can be reused for many times without obvious decrease in activity, suggesting a great potential of the as-prepared CuOx/rGO nanocomposite for catalytic degradation of organic pollutants.
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Xu Liang, Xiaowen Chen, Zhiling Xiang, Rui Yan, Hui Xi, Ting Bian, Jingjia Zhang, Jingxiang Zhao, Qinghai Cai, Hongxia Wang,