Article ID Journal Published Year Pages File Type
783305 International Journal of Impact Engineering 2010 8 Pages PDF
Abstract

A new fine particle impact damper (FPID) is composed of a spherical impactor and a small quantity of fine particles as damping agent. The model of energy dissipation in the collision between two balls covered by fine particles is necessary to investigate the mechanism and performance of FPID. In this study, a simplified model verified by FEA simulations is proposed to estimate the energy dissipation in collision between two balls covered by fine particles. In addition, the energy dissipation in the collision between two balls covered by fine particles is compared with that in the impact between two balls without fine particles, by means of theoretical predictions. FEA simulations are also carried out to discuss the effects of diameter ratio of particle to ball, particle material and particle amount on the energetic expression of the elastic–plastic loading (EPL) index (EPLE). The results from the FEA simulations agree well with the estimations from the model proposed in this paper. It is concluded that the energy dissipation in the collision between two balls covered by fine particles can be predicted by classical collision models of two particles through the substitution of several parameters from balls; the plastic deformation of fine particles affixed on balls can exhaust much more energy than that of the two balls without particles, which is the reason for the good performance of FPID; the diameter ratio of particle to ball and the material of particles do not have significant effects on the EPLE when the ratio is limited to the range of [1/200 – 1/10]. A correlation of the EPLE and dimensionless initial relative velocity is also found for the collisions between two balls, which is independent not only of the particle size and material properties but also of the particles presence.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,