Article ID Journal Published Year Pages File Type
7834925 Applied Surface Science 2018 43 Pages PDF
Abstract
In the present study, crystal-facet-dependent gas sensing performance was thoroughly investigated and sensing mechanism of TiO2 was elaborated in depth. Anatase TiO2 nano-polyhedron with highly reactive (0 0 1) facet was successfully synthesized via a one-pot hydrothermal method using fluoride as facet stabilizer and was utilized for fabrication of carbon monoxide gas sensors, followed by characterization of microstructure, phase-purity and gas-sensing properties. Chemiresistive properties of (0 0 1)-dominated gas sensor exhibit superior response to CO with a maximum response of 27.9 at 300 ppm in optimum working temperature as 350 °C. Particularly, first-principle calculation was carried out to expound the sensing mechanism, which shows that CO adsorption on (0 0 1) facet is more stable and favorable than that on normally exposed (1 0 1) facet, corroborating the reactive nature of (0 0 1) facet.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , ,