Article ID Journal Published Year Pages File Type
7835499 Applied Surface Science 2018 8 Pages PDF
Abstract
The development of stable and effective anchoring materials to immobilize the soluble lithium polysulfide (Li2Sn) species for suppressing their shuttle effects is vital for the large-scale practical applications of lithium-sulfur (Li-S) batteries. Here, by means of density functional theory (DFT) computations, the potential applications of the experimentally available SiC2 siligraphene (g-SiC2) as an anchoring material of Li-S batteries are systemically investigated. Our results reveal that g-SiC2 exhibits remarkable but not strong binding strength for the soluble Li2Sn species due to the S-Si and Li-C interactions. Especially, the intactness of the Li2Sn species and the good conductance of g-SiC2 can be well preserved after anchoring the Li2Sn species. The further comparative research demonstrate that g-SiC2 is superior to other siligraphenes, enabling it to be a very promising material as an ideal anchoring material for the immobilization of soluble Li2Sn species to avoid their dissolution into electrolyte.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,