Article ID Journal Published Year Pages File Type
7836272 Applied Surface Science 2018 21 Pages PDF
Abstract
Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,