Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7836618 | Applied Surface Science | 2018 | 23 Pages |
Abstract
For supercapacitor applications, W18O49 nanowires have been extensively grown on graphitic carbon felt using a facile solvothermal method. The diameter and length of the nanowires are about 7 and 300Â nm, respectively. The nanowires consist of monoclinic W18O49 grown along the [010] direction, as shown by TEM and XRD analyses. The W18O49 nanowires, assembled on carbon felt, exhibit a high capacity of 588.33Â F/g at a current density of 1Â A/g together with an excellent cycle performance, and a low internal resistance during the electrochemical tests. This outstanding performance may originate from the three-dimensional porous nanostructure of these W18O49 nanowires, which leads to a reduction in the resistance and fast reaction kinetics due to the high specific surface area and electrolyte accessibility. Furthermore, sufficient oxygen deficiencies of the substoichiometric tungsten oxide can also contribute to the electrochemical activity, which can be confirmed by comparison of CV and EIS data with WO3 nanowires.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
Jinjoo Jung, Do Hyung Kim,