Article ID Journal Published Year Pages File Type
783819 International Journal of Impact Engineering 2007 12 Pages PDF
Abstract

The dynamic compression failure and ballistic penetration characteristics of conventional tungsten alloys similar in strength were investigated. Dynamic compression failure properties were generated with a symmetric Taylor test technique and penetration characteristics were obtained with 44 mm kinetic penetrators against an 300 HB hardness steel target at 1400 m/s. From shear crack length data generated with Taylor specimens impacted at different impact speeds a critical speed characterizing shear band initiation was deduced. The critical equivalent plastic strain at shear band initiation sites, obtained from the numerical simulation of the Taylor test at the critical impact speed, was found to decrease with the increase of the penetration performance. These results reinforce the argument that shear band formation is a failure mechanism associated with the erosion process for conventional tungsten alloys.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,