Article ID Journal Published Year Pages File Type
783979 International Journal of Non-Linear Mechanics 2008 13 Pages PDF
Abstract

A new approach is used to study the global dynamics of regenerative metal cutting in turning. The cut surface is modeled using a partial differential equation (PDE) coupled, via boundary conditions, to an ordinary differential equation (ODE) modeling the dynamics of the cutting tool. This approach automatically incorporates the multiple-regenerative effects accompanying self-interrupted cutting. Taylor's 3/43/4 power law model for the cutting force is adopted. Lower dimensional ODE approximations are obtained for the combined tool–workpiece model using Galerkin projections, and a bifurcation diagram computed. The unstable solution branch off the subcritical Hopf bifurcation meets the stable branch involving self-interrupted dynamics in a turning point bifurcation. The tool displacement at that turning point is estimated, which helps identify cutting parameter ranges where loss of stability leads to much larger self-interrupted motions than in some other ranges. Numerical bounds are also obtained on the parameter values which guarantee global stability of steady-state cutting, i.e., parameter values for which there exist neither unstable periodic motions nor self-interrupted motions about the stable equilibrium.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,