Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
784057 | International Journal of Non-Linear Mechanics | 2007 | 8 Pages |
Abstract
We determine the shape of the lightest rotating column that is stable against buckling, positioned in a constant gravity field, oriented along the column axis. In deriving the optimality conditions, the Pontryagin's principle was used. Optimal cross-sectional area is obtained from the solution of a non-linear boundary value problem. For this problem a variational principle and a first integral are formulated. Also a priori estimates of the cross-sectional area at the lower end are presented. The procedure is illustrated by three concrete examples. The problem treated here may be considered as a step in the dynamic optimization procedure of a heavy rotating column.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Z.D. Jelicic, T.M. Atanackovic,