Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
784075 | International Journal of Non-Linear Mechanics | 2006 | 11 Pages |
In this paper, the influence of the initial curvature of thin shallow arches on the dynamic pulse buckling load is examined. Using numerical means and a multi-dof semi-analytical model, both quasi-static and non-linear transient dynamical analyzes are performed. The influence of various parameters, such as pulse duration, damping and, especially, the arch shape is illustrated. Moreover, the results are numerically validated through a comparison with results obtained using finite element modeling. The main results are firstly that the critical shock level can be significantly increased by optimizing the arch shape and secondly, that geometric imperfections have only a mild influence on these results. Furthermore, by comparing the sensitivities of the static and dynamic buckling loads with respect to the arch shape, non-trivial quantitative correspondences are found.