Article ID Journal Published Year Pages File Type
784213 International Journal of Mechanical Sciences 2006 13 Pages PDF
Abstract

The conventional practice to predict preform shapes in hydroformimg processes based on finite-element analysis and/or experiment is an iterative procedure and requires many trials. In this paper, a computationally efficient direct design method, which effectively improves the design procedure, was introduced. The direct design method based on ideal forming theory, which was successfully applied for the design of flat blanks for stamping processes, was extended for the design of non-flat preform for tube hydroforming processes. A preform optimization methodology for non-flat blank solutions was proposed based on the penalty constraint method for the cross-sectional shape and length of a tube. The hybrid membrane/shell method was employed to capture thickness effect while maintaining membrane formulation in the ideal forming theory. Several classes of examples were analyzed to verify the current formulation.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,