Article ID Journal Published Year Pages File Type
7843455 Journal of Molecular Liquids 2018 38 Pages PDF
Abstract
In this study, silver silica coated magnetite (Fe3O4@Ag/SiO2) nanospheres were synthesized employing sonication method and their performance was evaluated as nanoadsorbents for the removal of Methylene Blue in batch mode experiments. The physical characteristics of these nanospheres were studied using XRD, SEM, EDX, TEM, and FTIR techniques. The Fe3O4@Ag/SiO2 nanospheres were capable to remove 99.6% Methylene Blue from aqueous solution at pH 7. A possible mechanism for the adsorption of Methylene Blue onto Fe3O4@Ag/SiO2 has been proposed. The adsorption equilibrium and kinetics were studied for experimental data. The removal process followed Langmuir isotherm with maximum monolayer adsorption capacity of 128.5 mg/g. Experimental kinetic data fitted well to Pseudo-second-order and Intraparticle diffusion models. The values of thermodynamic parameters, viz., ΔG0,  ΔS0 and ΔH0 confirmed spontaneous, endothermic and feasible adsorption of Methylene Blue under studied experimental conditions. The Fe3O4@Ag/SiO2 nanospheres were regeneratable and reusable for five successive cycles.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , ,