Article ID Journal Published Year Pages File Type
7845157 Surface Science Reports 2014 16 Pages PDF
Abstract
The theory of elasticity accurately describes the deformations of macroscopic bodies under the action of applied stress [1]. In this review, we examine the internal mechanisms of elasticity for strained-layer semiconductor heterostructures. In particular, we present extended x-ray-absorption fine structure (EXAFS) and x-ray diffraction (XRD) measurements to show how the bond lengths and bond angles in semiconductor thin-alloy films change with strain when they are grown coherently on substrates with different lattice constants. The structural distortions measured by experiment are compared to valence-force field (VFF) calculations and other theoretical models. Atomic switching and interfacial strain at buried interfaces are also discussed.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
,