Article ID Journal Published Year Pages File Type
784540 International Journal of Machine Tools and Manufacture 2010 8 Pages PDF
Abstract

Laser solid forming (LSF) is a promising manufacturing technology. Thermal behavior is very significant for the research of microstructure, performance and geometric dimension of the fabricated part. In this research, a two-dimensional transient analytical model was developed on a moving square heat source with a uniform heat intensity distribution, and applied to estimate the temperature distribution and deposition thickness of the LSF thin-wall structures. The effects of two ends of the thin-wall structure and the temperature decline after closing the laser beam were investigated. The deposition thickness with different process parameters was also calculated and agreed well with the data measured by a CCD camera system under the practical process parameters despite some differences. Finally, a unique strategy (adjusting the dwell time of laser beam at both ends) was proposed to improve the dimensional accuracy at two ends of the thin-wall sample, and the experimental results demonstrated the validity of the strategy proposed.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , ,