Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7845465 | Surface Science Reports | 2009 | 42 Pages |
Abstract
A central concept of quantum mechanics is the wave-particle duality; matter exhibits both wave- and particle-like properties and cannot be described by either formalism alone. To investigate the wave properties of the electrons, we perform experiments on a structure containing a double quantum dot embedded in the Aharonov-Bohm ring interferometer. Aharonov-Bohm rings are traditionally used to study interference of electron waves traversing different arms of the ring, in a similar way to the double-slit setup used for investigating interference of light waves. In our case, we use the time-resolved charge detection techniques to detect electrons one-by-one as they pass through the interferometer. We find that the individual particles indeed self-interfere and give rise to a strong interference pattern as a function of external magnetic field. The high level of control in the system together with the ability to detect single electrons enables us to make direct observations of non-intuitive fundamental quantum phenomena like single-particle interference or time-energy uncertainty relations.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Physical and Theoretical Chemistry
Authors
S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard,