Article ID Journal Published Year Pages File Type
7845465 Surface Science Reports 2009 42 Pages PDF
Abstract
A central concept of quantum mechanics is the wave-particle duality; matter exhibits both wave- and particle-like properties and cannot be described by either formalism alone. To investigate the wave properties of the electrons, we perform experiments on a structure containing a double quantum dot embedded in the Aharonov-Bohm ring interferometer. Aharonov-Bohm rings are traditionally used to study interference of electron waves traversing different arms of the ring, in a similar way to the double-slit setup used for investigating interference of light waves. In our case, we use the time-resolved charge detection techniques to detect electrons one-by-one as they pass through the interferometer. We find that the individual particles indeed self-interfere and give rise to a strong interference pattern as a function of external magnetic field. The high level of control in the system together with the ability to detect single electrons enables us to make direct observations of non-intuitive fundamental quantum phenomena like single-particle interference or time-energy uncertainty relations.
Related Topics
Physical Sciences and Engineering Chemistry Physical and Theoretical Chemistry
Authors
, , , , , , , ,