Article ID Journal Published Year Pages File Type
7845984 Journal of Quantitative Spectroscopy and Radiative Transfer 2018 13 Pages PDF
Abstract
In this paper we analyze the accuracy and efficiency of several radiative transfer models for inferring cloud parameters from radiances measured by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR). The radiative transfer models are the exact discrete ordinate and matrix operator methods with matrix exponential, and the approximate asymptotic and equivalent Lambertian cloud models. To deal with the computationally expensive radiative transfer calculations, several acceleration techniques such as, for example, the telescoping technique, the method of false discrete ordinate, the correlated k-distribution method and the principal component analysis (PCA) are used. We found that, for the EPIC oxygen A-band absorption channel at 764 nm, the exact models using the correlated k-distribution in conjunction with PCA yield an accuracy better than 1.5% and a computation time of 18 s for radiance calculations at 5 viewing zenith angles.
Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , , , ,