Article ID Journal Published Year Pages File Type
7846499 Journal of Quantitative Spectroscopy and Radiative Transfer 2017 15 Pages PDF
Abstract
The high resolution infrared spectra of the 32S16O18O molecule were recorded for the first time with a Bruker IFS 120 HR Fourier transform interferometer and analysed in the region of 1550-1950 cm−1 where the bands ν1+ν2 and ν2+ν3 are located. About 1050 and 1570 transitions were assigned in the experimental spectra with the maximum values of quantum numbers Jmax./Kamax. equal to 64/16 and 58/19 to the bands ν1+ν2 and ν2+ν3, respectively. The subsequent weighted fit of experimentally assigned transitions was made with the Hamiltonian model which takes into account the resonance interactions between the studied vibrational states. As the result, a set of 16 fitted parameters was obtained which reproduces the initial 1442 ro-vibrational energy values obtained from the assigned transitions with the drms=3.7×10−4cm−1. An analysis of more than 4050 experimental ro-vibrational line intensities of the ν1+ν2 and ν2+ν3 bands of 32S16O2 was made, and a set of 7 effective dipole moment parameters was obtained which reproduce the initial experimental line intensities with the drms=6.9%. Values of these parameters, being re-calculated to the values of corresponding parameters of the 34S16O2, 32S18O2 and 32S16O18O species were used for calculation of line intensities in the ν1+ν2 and ν2+ν3 bands of these three isotopologues. A list of transitions with their line intensities in the region of 1550-1950 cm−1 for the four mentioned species is generated.
Related Topics
Physical Sciences and Engineering Chemistry Spectroscopy
Authors
, , , , , ,