Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7847345 | Carbon | 2018 | 7 Pages |
Abstract
A visible sensing field effect transistor (FET) with a channel length of 100â¯nm for individual (6,5) single-walled carbon nanotubes (SWCNTs) is fabricated via a selective sorting method using 9,9-dioctyfluorenyl-2,7-diyl-bipyridine (PFO-BPy) polymer. The FET of the (6,5) SWCNTs shows p-type behavior with hundreds of on-off ratios and on-state conductivity of 50â¯Â±â¯4.0 (Ωâ¯m)â1. In addition, the photocurrent of the FET of the (6,5) SWCNTs in the visible range increases (maximum 200 times at 620â¯nm) with higher gate voltage. E22 transition and PFO-BPy transition are observed in the FET of the (6,5) SWCNTs without application of a gate voltage. Interestingly, exciton-phonon coupled E22 transition due to gate-doping (p-type), which has been reported in photoluminescence and absorption studies, is expected to occur in the photocurrent of the FET at negatively higher gate voltage (â¤â4â¯V). In addition, the exciton-phonon coupled E22 transition is prominently observable when carrier concentration by gate doping becomes approximately two-hundred sixty times (260â¯Â±â¯43) larger than carrier concentration without application of a gate voltage. This demonstration would be useful for the development of SWCNT-based visible sensors with gate control in the SWCNT devices.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Ki Hong Park, Seung-Hoon Lee, Fumiyuki Toshimitsu, Jihoon Lee, Sung Heum Park, Tsuyohiko Fujigaya, Jae-Won Jang,