Article ID Journal Published Year Pages File Type
78488 Solar Energy Materials and Solar Cells 2013 5 Pages PDF
Abstract

Solution processable small molecules are an alternative to conjugated polymers in organic photovoltaics and have recently been in the focus of intense research. In this work, organic–inorganic hybrid solar cells with active layers consisting of the solution-processable small-molecule p-DTS(FBTTh2)2 and copper indium sulfide nanoparticles are presented. The copper indium sulfide nanoparticles are formed in situ directly in the small molecule matrix from metal xanthate precursors. The prepared nanocomposite small molecule/copper indium sulfide films are very smooth, highlighting the good compatibility of p-DTS(FBTTh2)2 with the in situ preparation of metal sulfide nanoparticles. The formed nanoparticles have diameters of about 3 nm. Hybrid solar cells, exhibiting power conversion efficiencies of 1.3%, are characterized by IV curves, EQE spectra and electron microscopy.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► p-DTS(FBTTh2)2/copper indium sulfide hybrid solar cells were prepared. ► Power conversion efficiencies of 1.3% were achieved. ► Active layers were prepared via an in situ route using metal xanthate precursors. ► Nanocomposite layers are homogeneous and contain nanoparticles with a size of 3 nm.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,