Article ID Journal Published Year Pages File Type
7850336 Carbon 2016 31 Pages PDF
Abstract
Novel composites made of two dimensional (2D) MoS2 nanosheets and graphene (G) have been fabricated by a combined approach of chemical vapor deposition and hydrothermal technique. The G film helps to mediate the growth and dispersion of MoS2 nanosheets, of which the unique role of G in the MoS2 growth is revealed by density functional theory study. The results show that the hexagonal lattice carbon of the G film can easily interact with sulfur species derived from reaction precursors, which favors the uniform growth of 2D MoS2. The unique function of the G film demonstrated here can be extended to other carbon substrates for growing 2D MoS2 nanosheets. The G-MoS2 composites consisting of two types of 2D materials are tested as the binder-free counter electrodes (CEs) for dye-sensitized solar cells, showing a high power conversion efficiency of 7.1% that is comparable to the expensive Pt CEs. The 2D G film in the hybrids has two functions: the active sites for dispersing the electrochemically active MoS2 crystals and the high electrical conducting matrix for fast charge transfer. This synergistic effect may help to shed a light on the functionalization of other inorganic materials to G for advanced energy applications.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , , , ,