Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7850467 | Carbon | 2016 | 39 Pages |
Abstract
Carbon dots (CDs) are fluorescent nanoprobes offering a great potential in biological and medical applications due to their superior biocompatibility compared to metal chalcogenide quantum dots (e.g., CdSe). Key factors determining their cytotoxicity and cellular/intracellular tracking involve chemical nature and charge of surface functional groups. For the first time, we present a comprehensive cytotoxic study including cell cycle analysis of carbon dots differing in surface functionalization, namely pristine CDs (CDs-Pri) with negative charge due to carboxylic groups, polyethyleneglycol modified dots with neutral charge (CDs-PEG), and polyethylenimine coated dots with a positive charge (CDs-PEI). The CDs in vitro toxicity was studied on standard mouse fibroblasts (NIH/3T3). The results suggest that neutral CDs-PEG are the most promising for biological applications as they do not induce any abnormalities in cell morphology, intracellular trafficking, and cell cycle up to concentrations of 300 μg mLâ1. Negatively charged CDs-Pri arrested the G2/M phase of the cell cycle, stimulated proliferation and led to higher oxidative stress, however they did not enter the cell nucleus. In contrast, positively charged CDs-PEI are the most cytotoxic, entering into the cell nucleus and inducing the largest changes in G0/G1 phase of cell cycle, even at concentrations of around 100 μg mLâ1.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Marketa Havrdova, Katerina Hola, Josef Skopalik, Katerina Tomankova, Martin Petr, Klara Cepe, Katerina Polakova, Jiri Tucek, Athanasios B. Bourlinos, Radek Zboril,