Article ID Journal Published Year Pages File Type
7850739 Carbon 2016 33 Pages PDF
Abstract
A proper design of heterogeneous molecular catalysts supported on carbon materials requires a systematic study of “metal-carbon support interactions” and their influence on catalytic activity. In this study, hybrid materials containing covalently anchored iridium N-heterocyclic carbene (NHC) organometallic complexes have been successfully prepared from oxidized and partially reduced carbon nanotubes (CNTs). The preparation method for these supported materials relies on the selective functionalization of the superficial hydroxylic groups using the imidazolium salt, 1-(3-hydroxypropyl)-3-methyl-1H-imidazol-3-ium chloride. The hydrogen transfer catalysis activity of these nanotube-based hybrid catalysts was tested by the reduction of cyclohexanone to cyclohexanol with 2-propanol, and the results of the tests were compared with those obtained using similar hybrid graphene-based catalysts. While EXAFS analysis revealed a common first coordination shell of the iridium atom for all the hybrid materials examined, independently of whether they were either supported on carbon nanotubes or graphene materials, catalytic activity in all the reduced materials was significantly superior. Moreover, catalytic systems based on reduced CNTs exhibited a better performance than those based on reduced graphene materials. Both these facts suggest there is a positive correlation between hydrogen transfer catalytic activity, reconstruction of the aromatic carbon structure and the smaller amount of oxygen functional groups.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , , , ,