Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7850741 | Carbon | 2016 | 10 Pages |
Abstract
Metal-free nitrogen-doped carbon nanoparticles (NCNPs) have been synthesized via a solution plasma process with the potential to achieve uniformly distributed nitrogen atoms. A set of cyano-aromatic molecules, including benzonitrile, 2-cyanopyridine, and cyanopyrazine, were used as a single-source precursor in the synthesis without the addition of a metal catalyst source. The resultant NCNPs reveal uniformly nanosized particles (20-40Â nm) and an interconnected hierarchical pore structure with a high specific surface area (210-250Â m2Â gâ1). The difference in carbon/nitrogen mole ratios of organic precursors gives rise to the variation of nitrogen-doping level in NCNPs from 0.63 to 1.94 atom %. Detailed electrochemical evaluation toward the oxygen reduction reaction (ORR) demonstrates that NCNPs exhibit a significant improvement in terms of both onset potential and current density under alkaline and acidic conditions. The predominant distribution of graphitic-N and pyridinic-N sites on NCNPs plays an essential role in enhancing the ORR activity and the selectivity toward a four-electron reduction pathway. More importantly, NCNPs possess excellent robust long-term durability and strong methanol tolerance compared with those of a commercial Pt/carbon catalyst.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Gasidit Panomsuwan, Nagahiro Saito, Takahiro Ishizaki,