Article ID Journal Published Year Pages File Type
7850772 Carbon 2016 33 Pages PDF
Abstract
Contributed by the highly reactive, antibacterial, and readily reducible polyethylenimine (PEI), polyurethane (PU) composites incorporated with slightly reduced graphene oxide (SRGO) modified with PEI (SRGO-PEI) were prepared by in situ polymerization. X-ray photoelectron spectroscopy confirmed that SRGO-PEI was only slightly reduced under mild reducing conditions, because the carbon-to-oxygen atomic ratios increased slightly, from 2.56 to 4.00. The Fourier transform infrared spectra and the results of X-ray diffraction indicated that the PEI on SRGO-PEI were not only covalently grafted but also intercalated into SRGO interlayers. The mechanical properties and thermal stability of PU/SRGO-PEI were highly enhanced because of the chemical bonds formed between SRGO-PEI and PU matrices. With the incorporation of 1.0-wt% SRGO-PEI, the elongation at break, tensile strength, and Young's modulus of PU/SRGO-PEI increased by 32.7%, 251.1%, and 172.7%, respectively. Moreover, the adhesion of bacteria on functionalized GO/PU composites was reported for the first time. The PU/SRGO-PEI composites exhibited enhanced bacterial antiadhesive property when compared with that of pure PU and PU/GO. This desirable antibacterial property of SRGO-PEI is proposed to be mainly contributed by the presence of high-density amine groups in the PEI chains.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , ,