Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7851363 | Carbon | 2016 | 10 Pages |
Abstract
A type of lightweight and flexible multi-walled carbon nanotube (MWCNT)/waterborne polyurethane (WPU) composites is fabricated, which show superior shielding effectiveness (SE) of electromagnetic interference in the X-band even under the thin thickness of samples. The thickness values 0.05, 0.32 and 0.8Â mm correspond to SE of 24, 49 and 80Â dB, respectively. This attributes to the extremely high MWCNT loading up to 76Â wt%. Moreover, the composites show much higher specific SE (up to 3408Â dBÂ cm2/g) than other carbon-based polymer composites with similar filler amount. Shielding mechanisms of the composites with wide ranges of MWCNT loadings are discussed based on the concentration, thickness and conductivity. High concentration of MWCNT/WPU composites at low thicknesses indicates higher capability of shielding by absorption compared to reflection, which is adverse to composites with relatively low MWCNT mass ratios. A comparison between experimental and theoretical SE results is made in detail based on observed microstructures by scanning electron microscopy. The MWCNT/WPU composite films fabricated on large-area polyimide and cloth substrates are also demonstrated.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Zhihui Zeng, Mingji Chen, Hao Jin, Weiwei Li, Xiao Xue, Licheng Zhou, Yongmao Pei, Hui Zhang, Zhong Zhang,