Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7853175 | Carbon | 2014 | 10 Pages |
Abstract
Here we report a new strategy for preparation of water-soluble photoluminescent carbon quantum dots (CQDs) from petroleum coke. Petroleum coke was oxidized first in mixed concentrated H2SO4 and HNO3, and then functionalized by hydrothermal ammonia treatment. The as-made CQDs and nitrogen-doped CQDs (N-CQDs) were characterized by UV-Vis absorption spectroscope, fluorescence spectroscope, transmission electron microscope, atomic force microscope, Raman spectrometer, X-ray powder diffractometer, X-ray photoelectron spectroscope and Fourier transform infrared spectrometer. The results show that the quantum yield of CQDs increases greatly from 8.7 to 15.8%, and the fluorescent lifetime increases from 3.86 to 6.11Â ns after the hydrothermal treatment in ammonia. Moreover, the fluorescent color of N-CQDs can be tuned through the amount of doped nitrogen. Both CQDs and N-CQDs are water-soluble, and have uniform particle distribution, strong luminescence, and highly fluorescent sensitivity to pH in a range of 2.0-12.0. The uniform size distribution and nitrogen-doping of N-CQDs help to lead to high yield of radiative recombination, resulting in improved fluorescence properties. This work offers a simple pathway to produce high quality and enhanced photoluminescent CQDs from petroleum coke.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Mingbo Wu, Yue Wang, Wenting Wu, Chao Hu, Xiuna Wang, Jingtang Zheng, Zhongtao Li, Bo Jiang, Jieshan Qiu,