Article ID Journal Published Year Pages File Type
7854012 Carbon 2014 9 Pages PDF
Abstract
We report a new method to modify electrical properties of carbon nanotubes (CNTs). Single-, double- and multi-wall CNTs were subjected to treatment with a polar interhalogen compound, i.e. iodine monochloride (ICl) for 8 h at room temperature or briefly at 350 °C to assess kinetics and thermodynamics of the reactions. The results showed a powerful p-doping, which enabled us to decrease electrical resistance of the material by more than 60% eventually reaching specific conductivity of 1.24 S m2 g−1. Functionalization of CNTs with halogen atoms resulted in evident changes to the material microstructure and composition. To illustrate viability of this technique for manufacturing highly conductive wires, we have produced an ICl-doped CNT-based USB cable. The tests unequivocally revealed that the cable could be successfully used for power or data transmission on the verge of USB 2.0 capabilities.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,