Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7854782 | Carbon | 2014 | 14 Pages |
Abstract
The propagation of dynamic ripples induced by a C60 molecule is observed in pristine and defective graphene by molecular dynamics simulations. The ripples centered in the impact point propagate outward through the graphene, accompanied by a strain energy transfer. The noticeable diffraction and interference of the dynamic ripples are also observed. The Stone-Wales (SW) defect or vacancies greatly affect the propagation of the ripples near the defect. Both the SW defect and vacancies might be more capable of absorbing energy from the ripples, but have less capability to spread the gained energy again. The ripple propagation is also affected by the temperature of the system. It is expected that applications of graphene could be promoted in shock absorbers and protectors, and the theoretical support is provided for detecting defects in the graphene sheet.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Yanni Dong, Yezeng He, Yong Wang, Hui Li,