Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7855037 | Carbon | 2014 | 9 Pages |
Abstract
In contrast with traditional methods of observation, synchrotron radiation X-ray computed tomography (SR-CT) is an advanced technique that allows direct three-dimensional (3D) and non-destructive observation of microstructures in materials. High-resolution in situ observations (0.7 μm/pixel) of fractures in short carbon fiber/epoxy composites are achieved using the SR-CT technique, and the mechanical load response of short carbon fibers treated with oxidation and those untreated are compared. By the quantitative extraction and analysis of microstructure parameters in high-resolution 3D images, the failure mechanisms of the two materials were studied. The proportion of broken fibers to other types of fiber damage in the sample with oxidation-treated fibers increases by about 6%. Also, the oxidation treatment is able to reduce the ineffective length of the fibers by about 20%, thereby improving the mechanical properties of these composites. The results show that computed tomography can promote characterization of the internal microstructures in carbon fiber-reinforced polymer composites, which will facilitate further theoretical research on the failure mechanisms of these composites.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Xiaofang Hu, Luobin Wang, Feng Xu, Tiqiao Xiao, Zhong Zhang,