Article ID Journal Published Year Pages File Type
7855567 Carbon 2014 42 Pages PDF
Abstract
This paper presents a convenient one-pot hydrothermal strategy for the synthesis of graphene nanosheet (GNS)/hydroxyapatite (HA) nanorod composites (GNS/HA). Characterization of GNS/HA nanorod composites denote that rod-like HA, which has an average length of 55 nm and diameter of 13 nm, anchors on both sides of GNS. Introducing graphene can effectively improve the hardness and Young's modulus of HA. The synthesized GNS/HA nanorod composite containing 40 wt.% HA shows higher osseointegration ability with surrounding tissues, better biocompatibility, and more superior bone cellular proliferation induction than pristine graphene oxide and HA do. The biocompatibility of GNS/HA nanorod composite makes it a promising candidate for bone regeneration and implantation.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , ,