Article ID Journal Published Year Pages File Type
7855805 Carbon 2013 12 Pages PDF
Abstract
The continuous highly aligned hybrid carbon nanofibers (CNFs) with different content of acid-oxidized multi-walled carbon nanotubes (MWCNTs) were fabricated through electrospinning of polyacrylonitrile (PAN) followed by a series of heat treatments under tensile force. The effects of MWCNTs on the micro-morphology, the degree of orientation and ordered crystalline structure of the resulting nanofibers were analyzed quantitatively by diversified structural characterization techniques. The orientation of PAN molecule chains and the graphitization degree in carbonized nanofibers were distinctly improved through the addition of MWCNTs. The electrical conductivity of the hybrid CNFs with 3 wt% MWCNTs reached 26 S/cm along the fiber direction due to the ordered alignment of MWCNTs and nanofibers. The reinforcing effect of hybrid CNFs in epoxy composites was also revealed. An enhancement of 46.3% in Young's modulus of epoxy composites was manifested by adding 5 wt% hybrid CNFs mentioned above. At the same time, the storage modulus of hybrid CNF/epoxy composites was significantly higher than that of pristine epoxy and CNF/epoxy composites not containing MWCNTs, and the performance gap became greater under the high temperature regions. It is believed that such a continuous hybrid CNF can be used as effective multifunctional reinforcement in polymer matrix composites.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,