Article ID Journal Published Year Pages File Type
785892 International Journal of Non-Linear Mechanics 2009 14 Pages PDF
Abstract

Circular cylindrical shells conveying incompressible flow are addressed in this study; they lose stability by divergence when the flow velocity reaches a critical value. The divergence is strongly subcritical, becoming supercritical for larger amplitudes. Therefore the shell, if perturbed from the initial configuration, has severe deformations causing failure much before the critical velocity predicted by the linear threshold. Both Donnell's non-linear theory retaining in-plane displacements and the Sanders–Koiter non-linear theory are used for the shell. The fluid is modelled by potential flow theory but the effect of steady viscous forces is taken into account. Geometric imperfections are introduced and fully studied. Non-classical boundary conditions are used to simulate the conditions of experimental tests in a water tunnel. Comparison of numerical and experimental results is performed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,