Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
786002 | International Journal of Non-Linear Mechanics | 2007 | 10 Pages |
In this paper we first summarize the magnetic and mechanical balance equations for magnetorheological fluids undergoing steady motion in the presence of a magnetic field. A general three-dimensional non-linear constitutive law for such a fluid is given for the case in which the magnetic induction vector is used as the independent magnetic variable. The equations are needed for the analysis of boundary-value problems involving fluids with dispersed micron-sized ferrous particles subjected to a time-independent magnetic field. For illustration, the equations are applied, in the case of an incompressible fluid, to the solution of some basic problems. We consider unidirectional flow in a region confined by two infinite parallel plates with a magnetic field applied perpendicular to the plates. Next, we examine two problems involving a circular cylindrical geometry with the fluid occupying the region between two concentric cylinders: axial flow subjected to an axial magnetic field and circumferential flow with a circumferential field. After making some simplifying assumptions on the constitutive law and choosing material parameters, numerical solutions for the velocity profiles are illustrated.