Article ID Journal Published Year Pages File Type
786134 International Journal of Mechanical Sciences 2009 9 Pages PDF
Abstract

This paper focuses on the modelling of primary, secondary and tertiary creep of nickel-base single crystal superalloys at high temperatures. In particular, we propose an extension of the Cailletaud single crystal plasticity model [Méric L, Poubanne P, Cailletaud G. Single crystal modeling for structural calculations: part I—model presentation. Transactions of the ASME 1991;133:162–170] to include tertiary creep. This is achieved by introducing an additional evolution equation for a scalar damage variable per slip system. In addition, a methodology for the calibration of the material parameters of the model to fit the results from experiments has been implemented. The parameter identification rests upon a two-membered evolution strategy. The comparison with uniaxial and multiaxial test data shows a good agreement between model and experiment. The structural simulations have been performed by means of a special element technology which enables efficient and accurate finite element computations.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,