Article ID Journal Published Year Pages File Type
786147 International Journal of Mechanical Sciences 2008 15 Pages PDF
Abstract

A dynamic finite element method for free vibration analysis of generally laminated composite beams is introduced on the basis of first-order shear deformation theory. The influences of Poisson effect, couplings among extensional, bending and torsional deformations, shear deformation and rotary inertia are incorporated in the formulation. The dynamic stiffness matrix is formulated based on the exact solutions of the differential equations of motion governing the free vibration of generally laminated composite beam. The effects of Poisson effect, material anisotropy, slender ratio, shear deformation and boundary condition on the natural frequencies of the composite beams are studied in detail by particular carefully selected examples. The numerical results of natural frequencies and mode shapes are presented and, whenever possible, compared to those previously published solutions in order to demonstrate the correctness and accuracy of the present method.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,