Article ID Journal Published Year Pages File Type
786369 International Journal of Plasticity 2008 25 Pages PDF
Abstract

The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments on smooth and pre-notched tension specimens was carried out for a wide range of stress triaxialities. The underlying continuum damage model is based on kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based on experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending on stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed in detail.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,