Article ID Journal Published Year Pages File Type
786402 International Journal of Plasticity 2006 19 Pages PDF
Abstract

In order to predict the deformations under multi-axial and multi-path loadings in a phenomenological framework, a new rotational-isotropic-kinematic (RIK) hardening model has been suggested in the theory part of the paper combining isotropic, kinematic and rotational hardening. Essential features of this material model are Armstrong–Frederick type backstress components for kinematic hardening and a plastic spin for the rotational hardening describing the evolution of the symmetry axes of the anisotropic yield function.The purpose of this article is to illustrate the significance of the RIK hardening model in sheet metal forming applications as well as in springback predictions. With the rotational hardening and a correction term related to the kinematic hardening, the flow stress in each orientation can be described with few material parameters. Several benchmark problems are considered to illustrate and assess the performance of the RIK hardening model in comparison with other hardening models and experimental results.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,