Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7865955 | Materials Science and Engineering: C | 2018 | 12 Pages |
Abstract
In the present study, nanocomposite membranes are investigated using poly-ε-caprolactone (PCL), polyethylene glycol (PEG) and bioactive glass nanopowders (BGs) synthesized via solvent casting method with different reinforcement rates of BGs consisting of 3, 5 and 7â¯wt% for regenerating the periodontal tissue in vitro. These prepared membranes were evaluated by a vast range of essential tests; including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Transmition-electron microscopy (TEM), tensile testing before and after soaking in PBS solution, degradation and contact angle assessments as well as cell culture assays. In spite of the fact that the percentage of Cu incorporated into BGs was trivial, this negligible amount exerted major cytotoxic impact upon cells during in vitro cell tests. According to the results, the blended-membrane contained 7â¯wt% copper-free BGs indicated optimum characteristics including satisfactory mechanical and biodegradation features, more wettable surface, higher proliferation rates of adipose-derived stem cells (ADSCs), superior ALP activity and brilliant bone mineralization capacity which was confirmed by Alizarin red assay. As a consequence, it can be used as a desirable candidate for guided tissue/bone regeneration (GTR/GBR) to accelerate bone tissue healing.
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Shiva Soltani Dehnavi, Mehdi Mehdikhani, Mohammad Rafienia, Shahin Bonakdar,