Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7866577 | Materials Science and Engineering: C | 2018 | 6 Pages |
Abstract
In this work, the in vivo biocompatibility and biodegradation behavior of Mg-Nd-Zn-Zr alloy (denoted as JDBM) screws were studied using a goat femoral condyle fracture model. Blood analysis indicates that the liver and kidney functions of goats were not affected by JDBM, JDBM coated with brushite (denoted as JDBM-DCPD) and PLA implants. Radiographic analysis shows that JDBM-DCPD screw has lower degradation rate than JDBM. Histological images show that compared with PLA, JDBM and JDBM-DCPD show superior effect to promote more new bone formation. JDBM-DCPD group has more new bone formation than JDBM group, indicating good osteoinductivity of DCPD coating. JDBM group show higher osteogenic factors level (BMP2, ALP and OC) in peri-implant callus tissue than PLA group. Long-term (18Â months) in vivo implants Micro-CT result shows that the degradation of JDBM-DCPD screw may be slower than desirable, and the thickness of DCPD coating could be further adjusted to match the degradation to the bone recovery.
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Xiangdong Kong, Lei Wang, Guoyuan Li, Xinhua Qu, Jialin Niu, Tingting Tang, Kerong Dai, Guangyin Yuan, Yongqiang Hao,