Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7868593 | Materials Science and Engineering: C | 2015 | 10 Pages |
Abstract
Gelatin-hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO3)2, NH4H2PO4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G-HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6-10Â nm and tangle into porous microspheres after blending. The cell culture indicates that G-HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G-HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G-HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS.
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Shao Ching Chao, Ming-Jia Wang, Nai-Su Pai, Shiow-Kang Yen,