Article ID Journal Published Year Pages File Type
7868983 Materials Science and Engineering: C 2016 7 Pages PDF
Abstract
This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney-Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. With greater understanding of the way in which mechanical properties of SWCNT-AFM, it may easily possible to continuously tune the selectivity and sensitivity of nanotubes in biological applications.105
Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,