Article ID Journal Published Year Pages File Type
7869251 Materials Science and Engineering: C 2015 13 Pages PDF
Abstract
Calcium phosphate ceramics that mimic bone composition provide interesting possibilities for the advancement in bone tissue engineering. The present study reports on a chitosan composite reinforced by hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) obtained from waste mussel shells and cross-linked using tripolyphosphate (TPP). The ratios of the ceramic components in composites were 20/10/70, 30/20/50 and 40/30/30 (HA/β-TCP/CH, w/w %). Biodegradation rate, structural properties and in-vitro degradation of the bone-like composite scaffolds were investigated. The optimum amount of TPP required for composite was 2.5% and glycerol was used as plasticizer at an optimized concentration of 1%. Tripolyphosphate cross-linked chitosan composites were developed by freezing and lyophilisation. The Young's modulus of the scaffolds was increased from 4 kPa to 17 kPa and the porosity of composites dropped from 85 to 68% by increasing the HA/β-TCP ratio. After 28 days in physiological solution, bone-like composite scaffolds with a higher ratio of HA/β-TCP (e.g. 40/30/30) showed about 2% lower biodegradation in comparison to scaffolds with a lower ratio of HA/β-TCP (i.e. 20/10/70). The obtained data suggest that the chitosan based bone-like composites could be potential candidates for biomedical applications.
Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,