Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7869266 | Materials Science and Engineering: C | 2015 | 5 Pages |
Abstract
A novel calcium silicate borate Ca11Si4B2O22 ceramic was firstly prepared by the conventional solid-state reaction. In vitro hydroxyapatite mineralization was investigated by soaking the ceramics in simulated body fluid (SBF) solutions at body temperature (37 °C) for various time periods. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) measurements were applied to investigate the samples before and after the immersion of ceramics in SBF solution. The elemental compositions of a hydroxyapatite layer on the ceramics during the mineralization were confirmed by X-ray energy-dispersive spectra (EDS). Meanwhile, the bending strength and elastic modulus of Ca11Si4B2O22 ceramics were also measured, which indicate that the biomaterials based on Ca11Si4B2O22 ceramics possess bioactivity and might be a potential candidate as biomaterials for hard tissue repair. The bioactive mineralization ability was evaluated on the base of its crystal structural characteristics, i.e., silanol (Si-OH) and B-OH groups can be easily induced on the surface of Ca11Si4B2O22 ceramics soaked in SBF solutions.
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Yinfu Pu, Yanlin Huang, Shuyun Qi, Cuili Chen, Hyo Jin Seo,