Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7869796 | Materials Science and Engineering: C | 2015 | 8 Pages |
Abstract
A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA16 and designer functional peptide RADA16-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA16 scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA16-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA16. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair.
Keywords
bFGFNCAMMAP-25-bromodeoxyuridineDAPISAPsEthD-1GFAP3-DThree-dimensionalAFMFBSFGLEGF4′,6-diamidino-2-phenylindoleBDNFSpinal cord injuryBrdUScaffoldRetinoic acidcircular dichroismfetal bovine serumNeural stem cellMass spectrometryepidermal growth factorscibasic fibroblast growth factorBrain-derived neurotrophic factorTissue engineeringneural cell adhesion moleculeSelf assemblyatomic force microscopyGlial fibrillary acidic proteinMicrotubule associated protein 2Self-assembling peptidesliquid chromatographyHPLC
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Jian Wang, Jin Zheng, Qixin Zheng, Yongchao Wu, Bin Wu, Shuai Huang, Weizhi Fang, Xiaodong Guo,